Berlin, gestattet Jede Art der Vervielfältigung, auch auszugsweise, nur mit Genehmigung des DIN Deutsches Institut für Normung e.V., Medizinische Mikrobiologie

Farbstoffe

Xanthenfarbstoff, Fluoresceinderivat Eosin Y (= G)

DIN 58 981

Medical microbiology; dyes; xanthene dye, fluorescein derivate eosin Y (= G)

1 Anwendungsbereich und Zweck

Durch die in dieser Norm enthaltenen Festlegungen soll sichergestellt werden, daß die Ergebnisse spektralphotometrischer, zytochemischer, histochemischer, mikrospektralphotometrischer Untersuchungen und anderer Untersuchungen in allen Anwendungsbereichen des Xanthenfarbstoffes Eosin Y (= G) [vergleichbar mit Colour Index (C.I.) 45380] reproduzierbar und damit der überregionalen Qualitätskontrolle zugänglich sind. Insbesondere gilt dies für die Verwendung

- des Xanthenfarbstoffes Eosin Y (= G) gemeinsam mit dem Thiazinfarbstoff Azur B (Trimethylthionin) nach DIN 58 981 Teil 1 in der "Romanowsky-Giemsa-Färbung" nach DIN 58 995 Teil 1.
- des Eosin Y (= G) in der "Papanicolaou-Färbung" sowie in anderen zytologischen und histologischen Färbungen.

2 Begriff

Eosin Y (= G)

Xanthenfarbstoff Eosin Y (= G) = Dinatriumsalz der Eosinsäure C.I. 45380 (molare Masse 691,89 g \cdot mol $^{-1}$), Eosinsäure = 2,3,5,7-Tetrabromfluorescein C.I. 45380 : 2 (molare Masse 647,92 g \cdot mol $^{-1}$).

Durch Lösen von Eosinsäure in entsprechenden Puffern kann Eosin Y (= G) hergestellt werden.

Der Bezifferung der Substituenten liegt die Nomenklatur der IUPAC ¹) zugrunde.

3 Bezeichnung

Bezeichnung des Farbstoffs Eosin Y (= G), der den Reinheitsanforderungen dieser Norm entspricht (2):

Farbstoff DIN 58981 - 2

4 Anforderungen

4.1 Extinktionskoeffizient

Der molare dekadische Extinktionskoeffizient ε wird als die wesentliche Kenngröße zur Deklarierung der Farbstoffreinheit vorausgestellt. Chemisch reine Eosinsäure, im Hochvakuum bei erhöhter Temperatur bis zur Massenkonstanz getrocknet, 10^{-6} mol·l $^{-1}$ in 95% Ethanol 2) hat bei $\widetilde{v}_{max}=18\,900$ cm $^{-1}$ ($\lambda_{max}=530$ nm) einen molaren dekadischen Extinktionskoeffizienten

Nennwert: $\varepsilon = 1,13 \cdot 10^5 \ \text{l} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1} \ [1]$ Kleinstwert: $\varepsilon = 1 \cdot 10^5 \ \text{l} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$.

Prüfung nach Abschnitt 5.1

4.2 Reinheit des Eosin Y (= G)

Eosin Y (= G) nach Abschnitt 2 muß die weitüberwiegende Fraktion sein. Verunreinigungen dürfen nur in Spuren vorhanden sein.

Prüfung nach Abschnitt 5.2

4.3 Gehalt an anorganischen Verunreinigungen

Der Gehalt an anorganischen Verunreinigungen, bestimmt als Massenanteil an Sulfatasche, darf einen Grenzwert von 1% in der einzelnen Charge nicht überschreiten. Prüfung nach Abschnitt 5.3

4.4 Lösemittelfreiheit

Der Farbstoff muß frei von Lösemittel sein. Prüfung nach Abschnitt 5.4

4.5 Stabilität des Eosin Y (= G)

Der Extinktionskoeffizient und die Reinheit des Eosin Y (= G) muß bei einer Umgebungstemperatur von 20 bis 25 °C für mindestens 5 Jahre stabil sein.

Prüfung nach Abschnitt 5.5

- 1) IUPAC = International Union for Pure and applied Chemistry
- 2) Über die Bezugsquellen gibt Auskunft: Normenausschuß Medizin im DIN Deutsches Institut für Normung e.V., Burggrafenstraße 4–10, 1000 Berlin 30.

Fortsetzung Seite 2

Normenausschuß Medizin (NAMed) im DIN Deutsches Institut für Normung e.V.